If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x-122=0
a = 4; b = -18; c = -122;
Δ = b2-4ac
Δ = -182-4·4·(-122)
Δ = 2276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2276}=\sqrt{4*569}=\sqrt{4}*\sqrt{569}=2\sqrt{569}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{569}}{2*4}=\frac{18-2\sqrt{569}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{569}}{2*4}=\frac{18+2\sqrt{569}}{8} $
| -6+7x=-2x+57 | | 3b2-18b+27=0 | | 3/5xYx60=24 | | $126+r=$375 | | -14p+19=11 | | 6x+6(-x)+4x=12+x | | 9/16=(3/4)t | | (3y+30)+(2y)=180 | | -6x+9=20 | | 49x^2-24=0 | | 1/2(2w+1)=2/5 | | -x+3=3x+23 | | (x-12)^2=196 | | -2-5x=-2x-38 | | 9/5h-7/12=3/4h-13/6 | | 7+23m=58 | | 1.25^x=300 | | (7/6)(6d-18)-23=19 | | -4x+1=-11-2x | | 11=2w−-5 | | 12/15=x/6 | | 3x+1=6+ | | -5p+9p=-12 | | 5k−4k=3 | | (7-x)/(x)-(x)/(x+8)=5 | | -5p+9=-12 | | d/8+7=19 | | 9x-8x+3=7x+16 | | 38-x=7x-2 | | 3(g–1)+7=3g+4 | | 32=2x+2(x-6) | | 4n−3n=14 |